Sharp forms of Nevanlinna error terms in differential equations
نویسنده
چکیده
Sharp versions of some classical results in differential equations are given. Main results consists of a Clunie and a Mohon’ko type theorems, both with sharp forms of error terms. The sharpness of these results is discussed and some applications to nonlinear differential equations are given in the conluding remarks. Moreover, a short introduction on the connection between Nevanlinna theory and number theory, as well as on their relation to differential equations, is given. In addition, a brief review on the recent developments in the field of sharp error term analysis is presented.
منابع مشابه
Exceptional sets for the derivatives of Blaschke products
is the Nevanlinna characteristic of f [13]. Meromorphic functions of finite order have been extensively studied and they have numerous applications in pure and applied mathematics, e.g. in linear differential equations. In many applications a major role is played by the logarithmic derivative of meromorphic functions and we need to obtain sharp estimates for the logarithmic derivative as we app...
متن کاملAPPLICATION OF HAAR WAVELETS IN SOLVING NONLINEAR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
A novel and eective method based on Haar wavelets and Block Pulse Functions(BPFs) is proposed to solve nonlinear Fredholm integro-dierential equations of fractional order.The operational matrix of Haar wavelets via BPFs is derived and together with Haar waveletoperational matrix of fractional integration are used to transform the mentioned equation to asystem of algebraic equations. Our new met...
متن کاملAn Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients
In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...
متن کاملSums of Nevanlinna functions and differential equations on star-shaped graphs
Additive decompositions of a meromorphic function give rise to quotient representations of a particular form. We raise the question which quotient representations of a given function arise in this way. This question is answered by means of two characterizations via different terms. We pay particular attention to functions belonging to various subclasses of the Nevanlinna class of functions with...
متن کاملFUZZY INTEGRO-DIFFERENTIAL EQUATIONS: DISCRETE SOLUTION AND ERROR ESTIMATION
This paper investigates existence and uniqueness results for the first order fuzzy integro-differential equations. Then numerical results and error bound based on the left rectangular quadrature rule, trapezoidal rule and a hybrid of them are obtained. Finally an example is given to illustrate the performance of the methods.
متن کامل